报告题目:Adaptive-Coefficient Finite Difference Frequency Domain Method for Time-Fractional Diffusive-Viscous Wave and Cattaneo Equations with Absorbing Boundary Conditions
报 告 人:曹建雄 副教授
报告时间:2024年6月17日15:00-17:00
报告地点:明理楼C302B
报告人简介:
曹建雄,兰州理工大学副教授,硕士生导师,甘肃省知识产权专家库、甘肃省庆阳市数字经济发展咨询专家库成员。主要从事地反常扩散过程的分数阶偏微分方程建模、数值算法及其在非常规油气勘探、高放废物深地处置等领域的应用以及基于深度学习的偏微分方程数值解法等研究,先后在FCAA、JCAM、Chaos、JSC、Journal of Geophysics and Engineering等期刊发表学术论文20余篇,主持国家自然科学基金青年项目、地区项目、专项、国家国防科工局国防基础科研、甘肃省自然科学基金,甘肃省教育厅青年博士基金,兰州理工大学红柳优秀青年人才计划等课题8项。
报告内容摘要:
The time-fractional Cattaneo (TFC) equation is a practical tool for simulating anomalous dynamics in physical diffusive processes, the diffusive-viscous wave (DVW) equation arises in a variety of applications in geophysics, and it plays an important role in seismic exploration. However, the existing numerical methods for the TFC equation generally deal with the Dirichlet boundary conditions.
In this talk, I will first introduce a time-fractional diffusive-viscous wave (TFDVW) equation, then present adaptive-coefficient (AC) finite-difference frequency-domain (FDFD) method respectively for solving TFDVW equation and TFC equation with absorbing boundary condition as a complex-frequency-shifted (CFS) perfectly matched layer (PML) .
主办单位:理学院、人工智能研究院、非线性动力系统研究所
数理力学研究中心 、科学技术发展研究院
【关闭】