1、代表性项目
(1) 国家自然基金青年基金,52104007,2022年1月-2024年12月,主持
(2) 绿色建材全国重点实验室开放基金,2023GBM03,2023年8月-2025年7月,主持
(3) 油气藏地质全国重点实验室开放基金,PLN2023-35,2023年10月-2025年10月,主持
(4) 中国石油塔里木油田重大项目,2024年4月-2026年4月,主持
(5) 中国石油西部钻探,温-压耦合水泥环完整性理论模型委托技术开发,2023年9月-2024年7月,主持
(6) 川庆钻探长庆固井,固井水泥石性能检测,2023年6月-2024年12月,主持
(7) 中石油川庆钻探,树脂工作液特殊性能评价,2021年10月-2022年9月,主持
(8) 嘉华特种水泥股份有限公司,特种水泥浆特殊性能检测,2021年11月-2023年12月,主持
(9) 中国石油渤海钻探,抗腐蚀水泥浆体系开发,2021年9月-2022年12月,主研
2、代表性论文
(1) 深井固井水泥浆凝固阶段的传压效率时变规律. 天然气工业, 2024, 44(8): 125-132. (EI,第一作者)
(2) Improvement of the microstructure of hydration products in cement paste by epoxy resin under high temperature and high pressure. Construction and Building Materials, 2024, 438: 137167. (SCI一区TOP,第一作者)
(3) Preparation of cellulose fibre-sheets and its impact on pore connectivity of cement paste during early hydration. Construction and Building Materials, 2024, 411: 134535. (SCI一区TOP,第一作者)
(4) Preparation of cellulose nanofibrils and their effects on the rheological properties and compressive strength of oil-well cement paste. Construction and Building Materials, 2023, 394: 132313. (SCI一区TOP,第一作者)
(5) Optimisation of early hydration, microstructure, and elevated-temperature resistance of calcium aluminate cement using steel-making slag. Ceramics International, 2022, 48(23): 35328-35339. (SCI一区,第一作者)
(6) Microstructural feature of cellulose fibre in cement-based composites at different curing temperature. Journal of Building Engineering, 2023, 63: 105569. (SCI二区,第一作者)
(7) Quantitative determination of the hydrostatic pressure of oil-well cement slurry using its hydration kinetics [J]. Construction and Building Materials, 2022, 340: 127704.(SCI一区TOP,第一作者)
(8) Pore connectivity of oil well cement in the early hydration stage by in situ electrical resistivity measurements and low-field nuclear magnetic resonance [J]. Construction and Building Materials, 2021, 303: 124448.(SCI一区TOP,第一作者)
(9) Time-varying characteristics and mechanisms of hydrostatic pressure descent of Portland cement slurry [J], Powder Technology, 2021, 385: 434–443. (SCI二区,第一作者)
(10) Visualization and quantification of pore structure of oil-well cement slurry in liquid-solid transition stage using high-resolution computed tomography [J]. Cement and Concrete Composites, 2020, 111: 103633.(SCI一区TOP,第一作者)
(11) Analysis of interfacial nanostructure and interaction mechanisms between cellulose fibres and calcium silicate hydrates using experimental and molecular dynamics simulation data [J]. Applied Surface Science, 2020, 506: 144914. (SCI二区,第一作者)
(12) Effects of steam on the compressive strength and microstructure of cement paste cured under alternating ultrahigh temperature [J]. Cement and Concrete Composites, 2020, 112: 103681. (SCI一区TOP,第一作者)
(13) Effects of microstructure and pore water on electrical conductivity of cement slurry during early hydration [J]. Composites Part B, 2019, 177: 107435. (SCI一区TOP,第一作者)
(14) Evolution of pore structure of oil well cement slurry in suspension–solid transition stage [J]. Construction and Building Materials, 2019, 214: 382–398. (SCI一区TOP,第一作者)
(15) Effect of the hydration rate and microstructure of Portland cement slurry on hydrostatic pressure transfer [J]. Powder Technology, 2019, 352: 251–261. (SCI二区,第一作者)
(16) Design of low-density cement optimized by cellulose-based fibre for oil and natural gas wells [J]. Powder Technology, 2018, 338: 506–518. (SCI二区,第一作者)
(17) Effects of steam on the compressive strength and microstructure of cement paste cured under alternating ultrahigh temperature [J]. Cement and Concrete Composites, 2020, 112: 103681 (SCI一区,通讯作者)
(18) Effect of CO2 solution on Portland cement paste under flowing, migration, and static conditions [J]. Journal of Natural Gas Science and Engineering, 2021, 95: 104179 (SCI二区,通讯作者)
(19) Graphite-reinforced Portland cement composites at alternate ultra-high temperatures [J]. Powder Technology, 2021, 378: 647-658 (SCI二区,通讯作者)
(20) Granular calcium carbonate reinforced the cement paste cured by elevated temperatures [J]. ACS Omega, 2023, 8: 8346-8354 (SCI三区,通讯作者)
3、代表性专利
(1) 刘开强, 等. 利用水泥浆水化放热量预测静液柱压力的方法[P], 20221 0022564.X
(2) 刘开强, 等. 固井水泥浆凝固过程孔隙连通性的定量原位评价方法[P], 202110225263.2
(3) 刘开强, 等. 一种固井顶替界面模拟实验装置及其使用方法[P], 20211005187.1
(4) 刘开强, 等. 利用水泥浆水化放热量预测静液柱压力的方法[P], 20221 0022564.X
(5) 刘开强,等. 一种快测式水泥环完整性实验装置及评价方法[P], 202110051884.3
(6) 刘开强, 等. 改性天然纤维素纤维及其制备方法和抗水侵固井水泥浆[P], 202110401187.6
(7) 刘开强, 等. 一种直接评价高温高压下水泥浆中植物纤维适应性的方法[P], 2022110876473
(8) 刘开强, 等. 固井水泥浆硬化中静液柱压力和传压能力评价装置及方法[P], 202210824185.2
(9) 刘开强, 等. 凝固过程固井水泥浆传压效率评价方法[P], 202310608337.X
4、省部级奖励
(1)中国材料研究学会科学技术奖(技术发明奖二等奖) |